A Cationic Polyacrylamide Dispersion Synthesis by Dispersion Polymerization in Aqueous Solution

نویسندگان

  • Yufeng Wang
  • Kefu Chen
  • Lihuan Mo
  • Huiren Hu
چکیده

A cationic polyacrylamide (CPAM) dispersion, the copolymer of acrylamide (AM) and acryloyloxyethyltrimethyl ammonium chloride (DAC), has been synthesized through dispersion polymerization in aqueous ammonium sulfate ((NH4)2SO4) solution. The polymerization was initiated by tert-butyl hydroperoxide (TBHP) and ferrisulfas (FeSO4) using poly(dimethyl diallyl ammonium chloride) (PDMDAAC) as the stabilizer. At the optimal reaction conditions, the relative molecular weight of the CPAM dispersion was 4.2×10, its charge density was 2.2 mmol·g, its average particle size was 6.01 μm, and its stability and dissolvability were both excellent. The CPAM dispersion was characterized using Fourier-transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and differential scanning calorimeter (DSC). Results indicated that the copolymerization was successful.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological investigation of Graphene Oxide/ Polyacrylamide super-elastic nanocomposite by a solution polymerization process with enhanced rheological property and thermal conductivity

A series of Graphene Oxide/ Polyacrylamide (GO/PAM) super-elastic nanocomposites with different amounts of Graphene Oxide Nanosheets (GONSs) (0.5, 1, 1.5, and 2 wt. %) were synthesized using an in-situ polymerization in an aqueous medium in this paper. To this end, we proposed a method for obtaining super-elastic nanocomposites with a high dispersion of GONSs in the PAM chains as well as in a r...

متن کامل

Equilibrium Swelling Study of Cationic Acrylamide-Based Hydrogels: Effect of Synthesis Parameters, and Phase Transition in Polyelectrolyte Solutions

Cationic copolymer gels of acrylamide and [(methacrylamido) Propyl] trimethyl ammonium chloride (MAPTAC) were synthesized by free radical aqueous solution polymerization. The Taguchi method, a robust experimental design, was employed for the optimization of the synthesis based on the equilibrium swelling capacity of the hydrogels. Based on Taguchi method a standard L16 orthogonal array with fiv...

متن کامل

Synthesis of well-defined epoxy-functional spherical nanoparticles by RAFT aqueous emulsion polymerization†

The environmentally-friendly synthesis of epoxy-functional spherical nanoparticles has been achieved using polymerization-induced self-assembly (PISA) in aqueous solution. Firstly, a non-ionic hydrophilic stabilizer block, poly(glycerol monomethacrylate) (PGMA), was prepared by reversible addition–fragmentation chain transfer (RAFT) solution polymerization in ethanol. This water-soluble precurs...

متن کامل

Stability and Rheological Behavior of Sulfonated Polyacrylamide/ Laponite Nanoparticles Dispersions in Electrolyte Media

Due to the importance of nanoparticles stability in industrial applications, in this research, stability of laponite nanoparticles dispersions containing different concentrations of sodium sulfonated polyacrylamide (SPA) was investigated in electrolyte media for oil reservoirs applications. In this regard, effect of parameters such as polymer concentration, temperature, and ionic strength were ...

متن کامل

Cationic disulfide-functionalized worm gels.

The recent development of polymerization-induced self-assembly (PISA) has facilitated the rational synthesis of a range of diblock copolymer worms, which hitherto could only be prepared via traditional post-polymerization processing in dilute solution. Herein we explore a new synthetic route to aqueous dispersions of cationic disulfide-functionalized worm gels. This is achieved via the PISA syn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011